Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Thorac Oncol ; 19(1): 160-165, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429463

RESUMO

INTRODUCTION: MET fusions have been described only rarely in NSCLC. Thus, data on patient characteristics and treatment response are limited. We here report histopathologic data, patient demographics, and treatment outcome including response to MET tyrosine kinase inhibitor (TKI) therapy in MET fusion-positive NSCLC. METHODS: Patients with NSCLC and MET fusions were identified mostly by RNA sequencing within the routine molecular screening program of the national Network Genomic Medicine, Germany. RESULTS: We describe a cohort of nine patients harboring MET fusions. Among these nine patients, two patients had been reported earlier. The overall frequency was 0.29% (95% confidence interval: 0.15-0.55). The tumors were exclusively adenocarcinoma. The cohort was heterogeneous in terms of age, sex, or smoking status. We saw five different fusion partner genes (KIF5B, TRIM4, ST7, PRKAR2B, and CAPZA2) and several different breakpoints. Four patients were treated with a MET TKI leading to two partial responses, one stable disease, and one progressive disease. One patient had a BRAF V600E mutation as acquired resistance mechanism. CONCLUSIONS: MET fusions are very rare oncogenic driver events in NSCLC and predominantly seem in adenocarcinomas. They are heterogeneous in terms of fusion partners and breakpoints. Patients with MET fusion can benefit from MET TKI therapy.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Resultado do Tratamento
2.
Heliyon ; 9(12): e23206, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149213

RESUMO

Background: Ameloblastoma is a benign but locally invasive and aggressive odontogenic tumor harboring activating BRAF V600E mutations in about two thirds of the cases. Case presentation: Neoadjuvant therapy with Dabrafenib and Trametinib was given to a 42-year-old male patient with recurrent ameloblastoma of the right mandible with a BRAF V600E mutation for 18 months. The patient manifested an excellent response to the therapy with remarkable reduction in tumor size from 72.6 mm to 55.9 mm. Histopathologically, the tumor underwent significant degenerative changes with only a few sparse vital residuals revealing 0 % Ki67 proliferative index. Conclusions: Neoadjuvant therapy with BRAF-inhibitors or BRAF-MEK-inhibitors is an effective means to reduce the size of mandibulary ameloblastomas. We propose the consideration of neoadjuvant therapy in future treatment modalities to minimize post-surgical morbidity and facial deformations.

3.
Lung Cancer ; 184: 107344, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579577

RESUMO

BACKGROUND: ROS1 fusions are well treatable aberrations in NSCLC. Besides solvent-front mutations (SFM) in resistance to targeted therapy, small-scale ROS1 mutations are largely unknown. We exploratively analyzed the clinical and molecular characteristics of small-scale ROS1 mutations in NSCLC patients without activating ROS1 fusions or SFMs. METHODS: Next-generation sequencing was performed on tissue samples from NSCLC patients within the Network Genomic Medicine. Patients with ROS1 fusions and SFMs were excluded. We analyzed clinical characteristics of patients harboring small-scale ROS1-mutations, ROS1- and co-occurring mutations, and their response to systemic therapy. RESULTS: Of 10,396 patients analyzed, 101 (1.0%) patients harbored small-scale ROS1 mutations. Most patients were male (73.3%) and smokers (96.6%). Nearly half of the patients presented with squamous-cell carcinoma (SqCC, 40.4%). Most mutations were transversions (50.5%), and 66% were in the kinase domain. Besides TP53 mutations (65.3%), KRAS (22.8%), EGFR (5.9%), PIK3CA (9.9%) and FGFR1-4 mutations (8.9%) co-occurred. In 10 (9.9%) patients, ROS1 mutation was the only aberration detected. Median overall survival (mOS) differed significantly in patients with or without KRAS co-mutations (9.7 vs 21.5 months, p = 0.02) and in patients treated with or without immune-checkpoint blockade (ICB) during treatment (21.5 vs 4.4 months, p = 0.003). CONCLUSION: The cohort's clinical characteristics contrasted ROS1-fused cohorts. Co-occurrence of KRAS mutations led to shortened survival and patients benefited from ICB. Our data does not support the idea of ROS1 small-scale mutations as strong oncogenic drivers in NSCLC, but rather as relevant bystanders altering the efficacy of treatment approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Mutação
4.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606995

RESUMO

The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer (SQLC) has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only 11% of patients with 8p11 amplification (detected by FISH) responded to FGFR kinase inhibitor treatment. To understand the mechanism of FGFR1 dependency, we performed deep genomic characterization of 52 SQLCs with 8p11-p12 amplification, including 10 tumors obtained from patients who had been treated with FGFR inhibitors. We discovered somatically altered variants of FGFR1 with deletion of exons 1-8 that resulted from intragenic tail-to-tail rearrangements. These ectodomain-deficient FGFR1 variants (ΔEC-FGFR1) were expressed in the affected tumors and were tumorigenic in both in vitro and in vivo models of lung cancer. Mechanistically, breakage-fusion-bridges were the source of 8p11-p12 amplification, resulting from frequent head-to-head and tail-to-tail rearrangements. Generally, tail-to-tail rearrangements within or in close proximity upstream of FGFR1 were associated with FGFR1 dependency. Thus, the genomic events shaping the architecture of the 8p11-p12 amplicon provide a mechanistic explanation for the emergence of FGFR1-driven SQLC. Specifically, we believe that FGFR1 ectodomain-deficient and FGFR1-centered amplifications caused by tail-to-tail rearrangements are a novel somatic genomic event that might be predictive of therapeutically relevant FGFR1 dependency.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Amplificação de Genes , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Epiteliais/metabolismo
5.
J Neurooncol ; 163(3): 597-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37382806

RESUMO

BACKGROUND: The expression level of the programmed cell death ligand 1 (PD-L1) appears to be a predictor for response to immunotherapy using checkpoint inhibitors in patients with non-small cell lung cancer (NSCLC). As differences in terms of PD-L1 expression levels in the extracranial primary tumor and the brain metastases may occur, a reliable method for the non-invasive assessment of the intracranial PD-L1 expression is, therefore of clinical value. Here, we evaluated the potential of radiomics for a non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to NSCLC. PATIENTS AND METHODS: Fifty-three NSCLC patients with brain metastases from two academic neuro-oncological centers (group 1, n = 36 patients; group 2, n = 17 patients) underwent tumor resection with a subsequent immunohistochemical evaluation of the PD-L1 expression. Brain metastases were manually segmented on preoperative T1-weighted contrast-enhanced MRI. Group 1 was used for model training and validation, group 2 for model testing. After image pre-processing and radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. The radiomics model was trained and validated using random stratified cross-validation. Finally, the best-performing radiomics model was applied to the test data. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analyses. RESULTS: An intracranial PD-L1 expression (i.e., staining of at least 1% or more of tumor cells) was present in 18 of 36 patients (50%) in group 1, and 7 of 17 patients (41%) in group 2. Univariate analysis identified the contrast-enhancing tumor volume as a significant predictor for PD-L1 expression (area under the ROC curve (AUC), 0.77). A random forest classifier using a four-parameter radiomics signature, including tumor volume, yielded an AUC of 0.83 ± 0.18 in the training data (group 1), and an AUC of 0.84 in the external test data (group 2). CONCLUSION: The developed radiomics classifiers allows for a non-invasive assessment of the intracranial PD-L1 expression in patients with brain metastases secondary to NSCLC with high accuracy.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Curva ROC
7.
Eur J Cancer ; 179: 124-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521334

RESUMO

OBJECTIVES: Resistance to MET inhibition occurs inevitably in MET-dependent non-small cell lung cancer and the underlying mechanisms are insufficiently understood. We describe resistance mechanisms in patients with MET exon 14 skipping mutation (METΔex14), MET amplification, and MET fusion and report treatment outcomes after switching therapy from type I to type II MET inhibitors. MATERIALS AND METHODS: Pre- and post-treatment biopsies were analysed by NGS (next generation sequencing), digital droplet PCR (polymerase chain reaction), and FISH (fluorescense in situ hybridization). A patient-derived xenograft model was generated in one case. RESULTS: Of 26 patients with MET tyrosine kinase inhibitor treatment, eight had paired pre- and post-treatment biopsies (Three with MET amplification, three with METΔex14, two with MET fusions (KIF5B-MET and PRKAR2B-MET).) In six patients, mechanisms of resistance were detected, whereas in two cases, the cause of resistance remained unclear. We found off-target resistance mechanisms in four cases with KRAS mutations and HER2 amplifications appearing. Two patients exhibited second-site MET mutations (p.D1246N and p. Y1248H). Three patients received type I and type II MET tyrosine kinase inhibitors sequentially. In two cases, further progressive disease was seen hereafter. The patient with KIF5B-MET fusion received three different MET inhibitors and showed long-lasting stable disease and a repeated response after switching therapy, respectively. CONCLUSION: Resistance to MET inhibition is heterogeneous with on- and off-target mechanisms occurring regardless of the initial MET aberration. Switching therapy between different types of kinase inhibitors can lead to repeated responses in cases with second-site mutations. Controlled clinical trials in this setting with larger patient numbers are needed, as evidence to date is limited to preclinical data and case series.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-met/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
8.
Inn Med (Heidelb) ; 63(7): 700-708, 2022 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-35925271

RESUMO

Non-small cell lung cancer (NSCLC) has made a remarkable development in recent decades with respect to its perception. In the late 1990s it was the "problem child" as the main cause of cancer with increasing tendencies, especially in women and with a pronounced stigmatization. It is now the role model as a biologically rational targeted treatment based on molecular dependencies of the tumor with a vast improvement of the traditionally poor survival times. Molecular tumor boards have long followed the NSCLC example in the assessment of targeted treatment approaches for other tumor entities. This review article gives an overview of the current possibilities for targeted treatment of NSCLC, which nowadays are applicable for nearly one third of all patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico
9.
Lung Cancer ; 168: 10-20, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461051

RESUMO

INTRODUCTION: Rebiopsies of non-small cell lung cancers (NSCLC) are mainly performed to (i) cover the evolution of potentially amenable resistance mechanisms against a targeted therapy, and (ii) to identify new therapeutic targets which were not detected in the initial diagnostic biopsy. Comprehensive systematic analyses evaluating the value of rebiopsies are missing. METHODS: Clinical databases from two large comprehensive cancer center networks were queried following prespecified criteria to identify prospectively entered NSCLC cases with at least one rebiopsy at disease progression. Clinicopathological and biomarker findings including multigene sequencing were correlated with clinical outcomes. RESULTS: From a total of 17,477 stage IV NSCLC patients, a cohort of 403 evaluable patients undergoing at least one rebiopsy of a primary tumor or metastasis was retrieved. Changes in biomarker profiles as compared to baseline were observed in 48.9%. In 31.3% of cases, findings of potential therapeutic relevance were revealed, including 18 patients (4.4%) with a targetable marker only detected at rebiopsy. New findings were more frequent (greater than50%) in NSCLC with EGFR/ALK/ROS1 alterations, including mutations of the dominant oncogene, TP53 mutations, and MET or ERBB2 amplifications. Patients undergoing rebiopsy exhibited superior overall survival compared to a control group, irrespective of presence (HR 0.28) or absence (HR 0.20, both p < 0.001) of a therapeutically targetable aberration. CONCLUSIONS: Rebiopsies at progression of advanced NSCLC are strongly supported by a high rate of clinically relevant findings. Current clinical practice selects a patient population with exceptional outcomes, which merits further characterization.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/patologia , Mutação , Prognóstico , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
10.
PLoS One ; 17(3): e0265056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259199

RESUMO

Dynamic contrast enhanced MRI (DCE-MRI) is a useful method to monitor therapy assessment in malignancies but must be reliable and comparable for successful clinical use. The aim of this study was to evaluate the inter- and intrarater reproducibility of DCE-MRI in lung cancer. At this IRB approved single centre study 40 patients with lung cancer underwent up to 5 sequential DCE-MRI examinations. DCE-MRI were performed using a 3.0T system. The volume transfer constant Ktrans was assessed by three readers using the two-compartment Tofts model. Inter- and intrarater reliability and agreement was calculated by wCV, ICC and their 95% confident intervals. DCE-MRI allowed a quantitative measurement of Ktrans in 107 tumors where 91 were primary carcinomas or intrapulmonary metastases and 16 were extrapulmonary metastases. Ktrans showed moderate to good interrater reliability in overall measurements (ICC 0.716-0.841; wCV 30.3-38.4%). Ktrans in pulmonary lesions ≥ 3 cm showed a good to excellent reliability (ICC 0.773-0.907; wCV 23.0-29.4%) compared to pulmonary lesions < 3 cm showing a moderate to good reliability (ICC 0.710-0.889; wCV 31.6-48.7%). Ktrans in intrapulmonary lesions showed a good reliability (ICC 0.761-0.873; wCV 28.9-37.5%) compared to extrapulmonary lesions with a poor to moderate reliability (ICC 0.018-0.680; wCV 28.1-51.8%). The overall intrarater agreement was moderate to good (ICC 0.607-0.795; wCV 24.6-30.4%). With Ktrans, DCE MRI offers a reliable quantitative biomarker for early non-invasive therapy assessment in lung cancer patients, but with a coefficient of variation of up to 48.7% in smaller lung lesions.


Assuntos
Meios de Contraste , Neoplasias Pulmonares , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
11.
NPJ Precis Oncol ; 5(1): 102, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921211

RESUMO

Activation of MAPK signaling via BRAF mutations may limit the activity of EGFR inhibitors in EGFR-mutant lung cancer patients. However, the impact of BRAF mutations on the selection and fitness of emerging resistant clones during anti-EGFR therapy remains elusive. We tracked the evolution of subclonal mutations by whole-exome sequencing and performed clonal analyses of individual metastases during therapy. Complementary functional analyses of polyclonal EGFR-mutant cell pools showed a dose-dependent enrichment of BRAFV600E and a loss of EGFR inhibitor susceptibility. The clones remain stable and become vulnerable to combined EGFR, RAF, and MEK inhibition. Moreover, only osimertinib/trametinib combination treatment, but not monotherapy with either of these drugs, leads to robust tumor shrinkage in EGFR-driven xenograft models harboring BRAFV600E mutations. These data provide insights into the dynamics of clonal evolution of EGFR-mutant tumors and the therapeutic implications of BRAF co-mutations that may facilitate the development of treatment strategies to improve the prognosis of these patients.

12.
J Thorac Oncol ; 16(4): 572-582, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33309988

RESUMO

INTRODUCTION: Robust data on the outcome of MET-aberrant NSCLC with nontargeted therapies are limited, especially in consideration of the heterogeneity of MET-amplified tumors (METamp). METHODS: A total of 337 tumor specimens of patients with MET-altered Union for International Cancer Control stage IIIB/IV NSCLC were analyzed using next-generation sequencing, fluorescence in situ hybridization, and immunohistochemistry. The evaluation focused on the type of MET aberration, co-occurring mutations, programmed death-ligand 1 expression, and overall survival (OS). RESULTS: METamp tumors (n = 278) had a high frequency of co-occurring mutations (>80% for all amplification levels), whereas 57.6% of the 59 patients with MET gene and exon 14 (METex14) tumors had no additional mutations. In the METamp tumors, with increasing gene copy number (GCN), the frequency of inactivating TP53 mutations increased (GCN < 4: 58.2%; GCN ≥ 10: 76.5%), whereas the frequency of KRAS mutations decreased (GCN < 4: 43.2%; GCN ≥ 10: 11.8%). A total of 10.1% of all the METamp tumors with a GCN ≥ 10 had a significant worse OS (4.0 mo; 95% CI: 1.9-6.0) compared with the tumors with GCN < 10 (12.0 mo; 95% confidence interval [CI]: 9.4-14.6). In the METamp NSCLC, OS with immune checkpoint inhibitor (ICI) therapy was significantly better compared with chemotherapy with 19.0 months (95% CI: 15.8-22.2) versus 8.0 months (95% CI: 5.8-10.2, p < 0.0001). No significant difference in median OS was found between ICI therapy and chemotherapy in the patients with METex14 (p = 0.147). CONCLUSIONS: METex14, METamp GCN ≥ 10, and METamp GCN < 10 represent the subgroups of MET-dysregulated NSCLC with distinct molecular and clinical features. The patients with METex14 do not seem to benefit from immunotherapy in contrast to the patients with METamp, which is of particular relevance for the prognostically poor METamp GCN ≥ 10 subgroup.


Assuntos
Neoplasias Pulmonares , Heterogeneidade Genética , Humanos , Imunoterapia , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas c-met/genética
13.
Cancer Med ; 9(14): 4991-5007, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436621

RESUMO

BACKGROUND: Treatment of patients with solid tumors and KRAS mutations remains disappointing. One option is the combined inhibition of pathways involved in RAF-MEK-ERK and PI3K-AKT-mTOR. METHODS: Patients with relapsed solid tumors were treated with escalating doses of everolimus (E) 2.5-10.0 mg/d in a 14-day run-in phase followed by combination therapy with sorafenib (S) 800 mg/d from day 15. KRAS mutational status was assessed retrospectively in the escalation phase. Extension phase included KRAS-mutated non-small-cell lung cancer (NSCLC) only. Pharmacokinetic analyses were accompanied by pharmacodynamics assessment of E by FDG-PET. Efficacy was assessed by CT scans every 6 weeks of combination. RESULTS: Of 31 evaluable patients, 15 had KRAS mutation, 4 patients were negative for KRAS mutation, and the KRAS status remained unknown in 12 patients. Dose-limiting toxicity (DLT) was not reached. The maximum tolerated dose (MTD) was defined as 7.5 mg/d E + 800 mg/d S due to toxicities at previous dose level (10 mg/d E + 800 mg/d S) including leucopenia/thrombopenia III° and pneumonia III° occurring after the DLT interval. The metabolic response rate in FDG-PET was 17% on day 5 and 20% on day 14. No patient reached partial response in CT scan. Median progression free survival (PFS) and overall survival (OS) were 3.25 and 5.85 months, respectively. CONCLUSIONS: Treatment of patients with relapsed solid tumors with 7.5 mg/d E and 800 mg/d S is safe and feasible. Early metabolic response in FDG-PET was not confirmed in CT scan several weeks later. The combination of S and E is obviously not sufficient to induce durable responses in patients with KRAS-mutant solid tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Everolimo/uso terapêutico , Fluordesoxiglucose F18/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sorafenibe/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Everolimo/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sorafenibe/farmacologia
14.
Lung Cancer ; 144: 40-48, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32361034

RESUMO

BACKGROUND: MAP2K1 mutations are rare in non-small cell lung cancer (NSCLC) and considered to be mutually exclusive from known driver mutations. Activation of the MEK1-cascade is considered pivotal in resistance to targeted therapy approaches, and MAP2K1 K57 N mutation could be linked to resistance in preclinical models. We set out this study to detect MAP2K1 mutations and potentially targetable co-mutations using a molecular multiplex approach. METHODS: Between 2012 and 2018, we routinely analyzed 14.512 NSCLC patients with two next-generation sequencing (NGS) panels. In a subset of patients, fluorescence in-situ hybridization was performed to detect rearrangements or amplifications. We assessed clinical parameters and co-occurring mutations and compared treatment outcomes of different forms of systemic therapy. RESULTS: We identified 66 (0.5%) patients with MAP2K1 mutations. Both adenocarcinoma (n = 62) and squamous cell carcinoma (n = 4) histology. The presence of the mutations was linked to smoking, and transversions were more common than transitions. K57 N was the most frequent MAP2K1 mutation (n = 25). Additional mutations were found in 57 patients (86.4%). Mutations of TP53 were detected in 33 patients, followed by KEAP1 mutations in 28.1%. 24 patients (36.4%) had either MAP2K1-only or a co-occurring aberration considered targetable, including EGFR mutations, a BRAF V600E mutation and ROS1 rearrangements. Outcome analyses revealed a trend toward benefit from pemetrexed treatment. CONCLUSION: Our analysis shows that MAP2K1-mutated NSCLC patients might frequently present with potentially targetable aberrations. Their role in providing resistance in these subtypes and the possible therapeutic opportunities justify further analyses of this rare NSCLC subgroup.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MAP Quinase Quinase 1/genética , Mutação , Fator 2 Relacionado a NF-E2 , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
15.
Lancet Oncol ; 20(10): 1454-1466, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405822

RESUMO

BACKGROUND: The clinical activity of fibroblast growth factor receptor (FGFR) inhibitors seems restricted to cancers harbouring rare FGFR genetic aberrations. In preclinical studies, high tumour FGFR mRNA expression predicted response to rogaratinib, an oral pan-FGFR inhibitor. We aimed to assess the safety, maximum tolerated dose, recommended phase 2 dose, pharmacokinetics, and preliminary clinical activity of rogaratinib. METHODS: We did a phase 1 dose-escalation and dose-expansion study of rogaratinib in adults with advanced cancers at 22 sites in Germany, Switzerland, South Korea, Singapore, Spain, and France. Eligible patients were aged 18 years or older, and were ineligible for standard therapy, with an Eastern Cooperative Oncology Group performance status of 0-2, a life expectancy of at least 3 months, and at least one measurable or evaluable lesion according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. During dose escalation, rogaratinib was administered orally twice daily at 50-800 mg in continuous 21-day cycles using a model-based dose-response analysis (continuous reassessment method). In the dose-expansion phase, all patients provided an archival formalin-fixed paraffin-embedded (FFPE) tumour biopsy or consented to a new biopsy at screening for the analysis of FGFR1-3 mRNA expression. In the dose-expansion phase, rogaratinib was given at the recommended dose for expansion to patients in four cohorts: urothelial carcinoma, head and neck squamous-cell cancer (HNSCC), non-small-cell lung cancer (NSCLC), and other solid tumour types. Primary endpoints were safety and tolerability, determination of maximum tolerated dose including dose-limiting toxicities and determination of recommended phase 2 dose, and pharmacokinetics of rogaratinib. Safety analyses were reported in all patients who received at least one dose of rogaratinib. Patients who completed cycle 1 or discontinued during cycle 1 due to an adverse event or dose-limiting toxicity were included in the evaluation of recommended phase 2 dose. Efficacy analyses were reported for all patients who received at least one dose of study drug and who had available post-baseline efficacy data. This ongoing study is registered with ClinicalTrials.gov, number NCT01976741, and is fully recruited. FINDINGS: Between Dec 30, 2013, and July 5, 2017, 866 patients were screened for FGFR mRNA expression, of whom 126 patients were treated (23 FGFR mRNA-unselected patients in the dose-escalation phase and 103 patients with FGFR mRNA-overexpressing tumours [52 patients with urothelial carcinoma, eight patients with HNSCC, 20 patients with NSCLC, and 23 patients with other tumour types] in the dose-expansion phase). No dose-limiting toxicities were reported and the maximum tolerated dose was not reached; 800 mg twice daily was established as the recommended phase 2 dose and was selected for the dose-expansion phase. The most common adverse events of any grade were hyperphosphataemia (in 77 [61%] of 126 patients), diarrhoea (in 65 [52%]), and decreased appetite (in 48 [38%]); and the most common grade 3-4 adverse events were fatigue (in 11 [9%] of 126 patients) and asymptomatic increased lipase (in 10 [8%]). Serious treatment-related adverse events were reported in five patients (decreased appetite and diarrhoea in one patient with urothelial carcinoma, and acute kidney injury [NSCLC], hypoglycaemia [other solid tumours], retinopathy [urothelial carcinoma], and vomiting [urothelial carcinoma] in one patient each); no treatment-related deaths occurred. Median follow-up after cessation of treatment was 32 days (IQR 25-36 days). In the expansion cohorts, 15 (15%; 95% CI 8·6-23·5) out of 100 evaluable patients achieved an objective response, with responses recorded in all four expansion cohorts (12 in the urothelial carcinoma cohort and one in each of the other three cohorts), and in ten (67%) of 15 FGFR mRNA-overexpressing tumours without apparent FGFR genetic aberration. INTERPRETATION: Rogaratinib was well tolerated and clinically active against several types of cancer. Selection by FGFR mRNA expression could be a useful additional biomarker to identify a broader patient population who could be eligible for FGFR inhibitor treatment. FUNDING: Bayer AG.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células de Transição/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/administração & dosagem , Pirróis/administração & dosagem , Receptores de Fatores de Crescimento de Fibroblastos/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Tiofenos/administração & dosagem , Injúria Renal Aguda/induzido quimicamente , Idoso , Anorexia/induzido quimicamente , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células de Transição/genética , Diarreia/induzido quimicamente , Fadiga/induzido quimicamente , Feminino , Humanos , Hiperfosfatemia/induzido quimicamente , Hipoglicemia/induzido quimicamente , Neoplasias Pulmonares/genética , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Pirróis/efeitos adversos , Pirróis/farmacocinética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Tiofenos/efeitos adversos , Tiofenos/farmacocinética , Vômito/induzido quimicamente
16.
Lung Cancer ; 133: 20-22, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31200822

RESUMO

OBJECTIVES: Resistance to tyrosine kinase inhibitor (TKI) therapy occurs inevitably in lung cancer patients with targetable genetic alterations. MET amplification has found to be an oncogenic driver in lung cancer with several reports showing response to MET TKI especially in cases with high-level amplification. MATERIALS AND METHODS: We report the case of a patient with lung adenocarcinoma harbouring low-level MET amplification and strong MET expression who was treated with crizotinib. RESULTS: The patient developed a durable response to crizotinib. A KRAS mutation and loss of MET amplification was found in a new lesion at time of progression as a potential mechanism of acquired resistance. CONCLUSION: MET amplification is a continuous biomarker with responses to MET TKI observed even in patients with low-level amplification. KRAS mutations may act as a resistance mechanism to MET inhibition in MET dependent lung cancer.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Crizotinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Amplificação de Genes , Humanos , Neoplasias Pulmonares/genética , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores
17.
J Thorac Oncol ; 14(7): 1266-1276, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30978502

RESUMO

INTRODUCTION: ROS1 rearrangements are found in 1% of lung cancer patients. Therapeutic efficacy of crizotinib in this subset has been shown in early phase trials in the United States and East Asia. Here we present data on efficacy and safety of a prospective phase II trial evaluating crizotinib in European ROS1-positive patients (EUCROSS). PATIENTS AND METHODS: The trial was a multicenter, single-arm phase II trial (Clinicaltrial.gov identifier: NCT02183870). Key eligibility criteria included patients who were 18 years of age or older with advanced/metastatic lung cancer and centrally confirmed ROS1-rearranged lung cancer (fluorescence-in situ hybridization). Treatment included 250 mg crizotinib twice daily. The primary endpoint was investigator-assessed objective response rate (ORR) (Response Evaluation Criteria in Solid Tumors, version 1.1). Key secondary endpoints were progression-free survival (PFS), overall survival, efficacy by independent radiologic review, safety, health-related quality of life, and molecular characterization of tumor tissue. RESULTS: Thirty-four patients received treatment. Four patients were excluded from efficacy analysis. Investigator ORR was 70% (95% confidence interval [CI]: 51-85; 21 of 30 patients) and median PFS was 20.0 months (95% CI: 10.1-not reached). Two patients with ROS1 wild-type sequences assessed by DNA sequencing had progression as best response. CD74-ROS1-positive patients had a trend towards a higher ORR and longer median PFS. TP53-co-mutant patients had a significantly shorter median PFS than wild-type patients (7.0 months, 95% CI: 1.7-20.0 versus 24.1 months, 95% CI: 10.1-not reached; p = 0.022). Treatment-related adverse events were documented in 33 of 34 patients (97%). CONCLUSIONS: Crizotinib is highly effective and safe in patients with ROS1-rearranged lung cancer. ROS1-/TP53-co-aberrant patients had a significantly worse outcome compared to TP53 wild-type patients.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Crizotinibe/uso terapêutico , Rearranjo Gênico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Critérios de Avaliação de Resposta em Tumores Sólidos , Taxa de Sobrevida
18.
J Thorac Oncol ; 14(4): 606-616, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30605727

RESUMO

INTRODUCTION: Although KRAS mutations in NSCLC have been considered mutually exclusive driver mutations for a long time, there is now growing evidence that KRAS-mutated NSCLC represents a genetically heterogeneous subgroup. We sought to determine genetic heterogeneity with respect to cancer-related co-mutations and their correlation with different KRAS mutation subtypes. METHODS: Diagnostic samples from 4507 patients with NSCLC were analyzed by next-generation sequencing by using a panel of 14 genes and, in a subset of patients, fluorescence in situ hybridization. Next-generation sequencing with an extended panel of 14 additional genes was performed in 101 patients. Molecular data were correlated with clinical data. Whole-exome sequencing was performed in two patients. RESULTS: We identified 1078 patients with KRAS mutations, of whom 53.5% had at least one additional mutation. Different KRAS mutation subtypes showed different patterns of co-occurring mutations. Besides mutations in tumor protein p53 gene (TP53) (39.4%), serine/threonine kinase 11 gene (STK11) (19.8%), kelch like ECH associated protein 1 gene (KEAP1) (12.9%), and ATM serine/threonine kinase gene (ATM) (11.9%), as well as MNNG HOS Transforming gene (MET) amplifications (15.4%) and erb-b2 receptor tyrosine kinase 2 gene (ERBB2) amplifications (13.8%, exclusively in G12C), we found rare co-occurrence of targetable mutations in EGFR (1.2%) and BRAF (1.2%). Whole-exome sequencing of two patients with co-occurring phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA) mutation revealed clonality of mutated KRAS in one patient and subclonality in the second, suggesting different evolutionary backgrounds. CONCLUSION: KRAS-mutated NSCLC represents a genetically heterogeneous subgroup with a high frequency of co-occurring mutations in cancer-associated pathways, partly associated with distinct KRAS mutation subtypes. This diversity might have implications for understanding the variability of treatment outcome in KRAS-mutated NSCLC and for future trial design.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação
19.
Artigo em Inglês | MEDLINE | ID: mdl-32914023

RESUMO

PURPOSE: Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective in acquired resistance (AR) to early-generation EGFR TKIs in EGFR-mutant lung cancer. However, efficacy is marked by interindividual heterogeneity. We present the molecular profiles of pretreatment and post-treatment samples from patients treated with third-generation EGFR TKIs and their impact on treatment outcomes. METHODS: Using the databases of two lung cancer networks and two lung cancer centers, we molecularly characterized 124 patients with EGFR p.T790M-positive AR to early-generation EGFR TKIs. In 56 patients, correlative analyses of third-generation EGFR TKI treatment outcomes and molecular characteristics were feasible. In addition, matched post-treatment biopsy samples were collected for 29 patients with progression to third-generation EGFR TKIs. RESULTS: Co-occurring genetic aberrations were found in 74.4% of EGFR p.T790-positive samples (n = 124). Mutations in TP53 were the most frequent aberrations detected (44.5%; n = 53) and had no significant impact on third-generation EGFR TKI treatment. Mesenchymal-epithelial transition factor (MET) amplifications were found in 5% of samples (n = 6) and reduced efficacy of third-generation EGFR TKIs significantly (eg, median progression-free survival, 1.0 months; 95% CI, 0.37 to 1.72 v 8.2 months; 95% CI, 1.69 to 14.77 months; P ≤ .001). Genetic changes in the 29 samples with AR to third-generation EGFR TKIs were found in EGFR (eg, p.T790M loss, acquisition of p.C797S or p.G724S) or in other genes (eg, MET amplification, KRAS mutations). CONCLUSION: Additional genetic aberrations are frequent in EGFR-mutant lung cancer and may mediate innate and AR to third-generation EGFR TKIs. MET amplification was strongly associated with primary treatment failure and was a common mechanism of AR to third-generation EGFR TKIs. Thus, combining EGFR inhibitors with TKIs targeting common mechanisms of resistance may delay AR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...